miércoles, 30 de marzo de 2011

Factorero

Factoreo de expresiones algebraicas

Primer caso
Factor común
9 + 15 - 12 +27
  • Figura el factor común 3, por lo tanto se puede sacar ese factor y se tiene:
9 + 15 - 12 + 27 = 3. ( 3 + 5 - 4 + 9 )
  • En el polinomio 3 x + xb - 1/2 xc el factor común es x y se tiene :
3x + xb - 1/2xc = x.( 3 + b - 1/2c)
  • En el polinomio 2x4a - 4x3a2b + 1/2 xa5c
Sacando factor común x a se tiene:
2x4a - 4x3a2b + 1/2 xa5c = xa: ( 2x - 4x2ab + 1/2a4c )
  • Regla: Si en todos los términos de un polinomio figura un factor común,dicho polinomio es igual al producto de ese factor por el polinomio que resulta al dividir cada término por ese factor.
Segundo caso
Descomposición en grupos de igual número de términos con un factor común en cada grupo.
2ax + 2bx - ay + 5a - by + 5b
Agrupo los términos que tienen un factor común
(2ax - ay + 5a ) + ( 2bx - by + 5b )
  • Saco el factor común de cada grupo
a ( 2x - y + 5 ) + b (2x - y + 5 )
Como las expresiones encerradas entre paréntesis son iguales se tiene:
(a + b) . ( 2x -y +5 )
  • Regla: Si los términos de un polinomio pueden reunirse en grupos de igual número de términos con un factor común en cada grupo, se saca en cada uno de ellos el factor común.Si queda la misma expresión en cada uno de los paréntesis,se la saca,a su vez,como factor común, quedando así factoreado el polinomio dado.
Tercer caso
Trinomio cuadrado perfecto
Se llama trinomio cuadrado perfecto al trinomio tal que dos de sus términos son cuadrados perfectos y el otro término es el doble producto de las bases de esos cuadrados.
36x2 + 12xy2 + y2 + y4
Es un trinomio cuadrado perfecto
  • El primer término es el cuadrado de 6x pues (6x)2 = 36x2; el último es el cuadrado de y2, pues (y2)2 = y4, y el segundo término es el doble producto de las bases de esos cuadrados, es decir de 6x por y2,pues 2 × 6x × y2 = 12xy2
(6x + y2 )2 = (6x + y2).(6x + y2 )
36x2 + 12xy2 + y4
  • En el trinomio cuadrado perfecto los términos cuadrados son siempre positivos,en cambio el término del doble producto puede ser negativo; en este caso debe ser negativo uno de los términos del binomio cuyo cuadrado es el trinomio dado:
(6x - y2 )2 = (6x - y2 ).(6x - y2 )
6x2 - 12xy2 + y2
Cuarto caso
Cuatrinomio cubo perfecto
Todo cuatrinomio de la forma a3 + 3a2b + 3ab2 + b3 en el que dos términos:
a3 y b3, son cubos perfectos; el tercer término : 3a2b, es el triplo del cuadrado de la base del primer término por la base del segundo, y el cuarto término 3ab2,es el triplo de la base del primer cubo por el cuadrado de la base del segundo
x3 + 6x2y + 12xy2 + 8 y3

Es un cuatrinomio cubo perfecto, pues:
x3 = (x)3
8y3 = ( 2y )3
6x2y = 3.(x)2.2y
12xy2 = 3.x.(2y)2
Este nombre de cuatrinomio cubo perfecto se debe a que dicho cuatrinomio proviene del cubo de un binomio :
( x+ 2y )3 = ( x+ 2y ). ( x+ 2y ).( x+ 2y ) =
x3 + 6x2y + 12xy2 + 8y3

En el caso de una resta :
( x -2y )3 = ( x - 2y ). ( x - 2y ). (x - 2y )
x3 - 6x2y + 12xy2 - 8y 3
Quinto caso
Diferencia de cuadrados
El producto de la suma por la diferencia de dos números es igual al cuadrado del primer número menos el cuadrado del segundo:
( a +b ) . ( a - b) = a2 - b2

25 a2y4 - 1/64 x6z8 =

( 5ay2 - 1/8x3z4) . ( 5ay2 +1/8x3z4)
Sexto caso
Suma o diferencia de potencias de igual grado
La suma de potencias de igual grado de exponente impar es divisible unicamente por la suma de sus bases.
( x3 + a3 ) : ( x + a ) = ( x2 - ax + a2)
Como se trata de una división exacta, el dividendo es igual al producto del divisor por el cociente. Luego:
( x3 + a3 ) = ( x + a ). ( x2 - ax + a2 )
La diferencia de potencias de igual grado de exponente impar es igual al producto de la diferencia de las bases por el cociente de dividir la primera diferencia por la segunda
( m3 - 27 n3 ) : ( m - 3 n) = ( m2 + 3mn + 9 n2)
La diferencia de potencias de igual grado de exponente par, es divisible por la suma y la diferencia de sus bases
( x6 - y6 ) : ( x + y ) =
( x + y ). ( x5 - x4y + x3y2 - x2y3 + xy4 - y5 )
( x6 - y6 ) : ( x - y ) =
( x - y ). ( x5 + x4y + x3y2 + x2y3 + xy4 +y5 )
La suma de potencias de igual grado de exponente par no se puede factorear.

martes, 29 de marzo de 2011

Los Personajes de la Matemáticas

Los Personajes de la Matemáticas
BIOGRAFÍAS

Pitágoras (c. 582-c. 500 a.C.), Vivió inmediatamente después de Tales. Fundó la escuela pitagórica (Sur de Italia), organización que se guiaba por el amor a la sabiduría y en especial a las Matemáticas y a la Música.
Después el pueblo se rebeló contra ellos y quemó su sede. Algunos dicen que el propio Pitágoras murió en el incendio. Otros, que huyó y, desencantado, se dejó morir de hambre.





Geometra griego y uno de los siete sabios de Grecia. Fue el primer matemático griego que inició el desarrollo racional de la geometría.
Tuvo que soportar durante años las burlas de quienes pensaban que sus muchas horas de trabajo e investigación eran inútiles. Pero un día decidió sacar rendimiento a sus conocimientos. Sus observaciones meteorológicas, por ejemplo, le sirvieron para saber antes que nadie que  la siguiente cosecha de aceitunas sería magnífica. Compró todas las prensas de aceitunas que había en Mileto. La cosecha fue, efectivamente,  buenísima, y todos los demás agricultores tuvieron que pagarle, por usar las prensas.
Hacia el año 600 antes de Cristo, cuando las pirámides habían cumplido ya su segundo milenio, el sabio griego Tales de Mileto visitó Egipto
El faraón, que conocía la fama de Tales, le pidió que resolviera un viejo problema: conocer la altura exacta de la Gran Pirámide. Tales se apoyó en su bastón, y esperó. Cuando la sombra del bastón fue igual de larga que el propio bastón, le dijo a un servidor del faraón: "Corre y mide rápidamente la sombra de la Gran Pirámide. En este momento es tan larga como la propia pirámide".
Tales era ya famoso desde que, en el año 585 a.C., predijo con toda exactitud un eclipse de sol.
Eratóstenes (c. 284-c. 192 a.C.), matemático, astrónomo, geógrafo, filósofo y poeta griego. Fue el primero que midió con buena exactitud el meridiano terrestre. Para ello ideó un sistema a partir de la semejanza de triángulos. Erastótenes midió en primer lugar la distancia entre dos ciudades egipcias que se encuentran en el mismo meridiano: Siene (Assuán) y Alejandría.
Esto lo hizo a partir del tiempo que tardaban los camellos en ir de una ciudad a otra.
Después se dio cuenta que el día del solsticio de verano a las 12 del mediodía el Sol alumbraba el fondo de un pozo muy profundo en la ciudad de Siene y que a esa misma hora el sol proyectaba una sombra en Alejandría. A raíz de esta circunstancia determinó, calculando el radio de la Tierra, que la longitud del meridiano debía  ser 50 veces mayor que la distancia entre las ciudades. El resultado que obtuvo Erastótenes para el meridiano, en medidas modernas, viene a ser 46.250 km., cifra que excede a la medida real sólo en un 16%. Eratóstenes también midió la oblicuidad de la eclíptica (la inclinación del eje terrestre) con un error de sólo 7' de arco, y creó un catálogo (actualmente perdido) de 675 estrellas fijas. Su obra más importante fue un tratado de geografía general. Tras quedarse ciego, murió en Alejandría por inanición voluntaria.

Nota: Y existen demás personajes que han ayudado en el campo de las matemáticas

Seguidores